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In this paper, we explore how students’ algebraic noticing’s and explanations changed across a two-year 
period with the introduction of designed instructional material. The data in this report is drawn from n=53 
Year 7-8 students’ responses to a free-response assessment task across two different years. Analysis 
focused on how students noticed and explained algebraic relationships in pairs of equivalent equations. 
Findings indicate that with the introduction of designed instructional material, there was a shift in student 
noticing of number properties to identify equivalence between pairs of equations. However, identifying 
the distributive property of multiplication and developing generalisations about the algebraic relationships 
remained challenging for students. 

Both in New Zealand and internationally, there has been increased attention to algebra and 
relationships as key learning areas of mathematics in research studies and policy documents (MoE, 
2007; Schifter, 2017). In the New Zealand context, middle school students (aged 10-13) are expected 
to generalise the properties of multiplication and division with whole numbers. Despite this 
expectation, teachers often focus considerable attention and time on teaching their students how to 
calculate (Schifter, 2017), and rarely give opportunities for learning that focuses on algebraic 
structures (Arcavi et al., 2017). This approach results in students developing an over-reliance or 
compulsion to calculate (Hunter et al., 2022, Arcavi et al., 2017) unless an algebraic intervention 
(Blanton et al., 2015) or an “algebrafying” of the classroom occurs (Blanton & Kaput, 2003). 
Supporting teachers to implement sound research-based instructional approaches that focus on 
algebraic structures is an important aspect of positioning teachers to move beyond teaching 
calculation and focus on the algebraic nature of number. Previous studies have focused on design 
experiments or professional development in relation to early algebra and teacher change (Blanton, 
et al., 2015; Blanton & Kaput, 2003). However, in this study we address a gap in the field by focusing 
on the introduction of designed instructional material for teachers to use in the classroom. 
Specifically, we address the following research question:  

• How do student responses to an assessment item involving noticing, and explaining algebraic 
structures change after provision of designed instructional materials to teachers? 

Literature Review 
Understanding number properties, relationships and mathematical structure are vital elements of 

developing sound number sense, and the importance of this has been well documented across the 
last decades (e.g., Mason et al., 2009; Kaput, 2017; Carpenter et al, 2003). In the last ten years the 
field of early algebra has gained significant movement particularly in relation to a focus on algebraic 
thinking with young students, as opposed to the ‘arithmetic-then-algebra’ approach that is deeply 
institutionalized within educational structures (Kaput, 2017, p.5). An early algebraic thinking 
approach builds on students' natural ideas of patterning and relationships (Blanton et al., 2015) 
emphasising the complex kinds of mathematics that young students can achieve when provided with 
opportunity. 
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Two of the big ideas underpinning early algebraic understanding are proposed by Blanton et al. 
(2015, p.43) as being ‘equivalence, expressions, equations, and inequalities’ and ‘generalized 
arithmetic’. These ideas involve developing an understanding of the equals sign and equivalence, 
the properties of number (commutative, associative, distributive, identity, inverses), and the ability 
to reason with the structure of expressions and equations rather than calculating an ‘answer’. If we 
consider the missing number equation 7 + 3 = __ + 4, a student relying on calculation may first 
compute 7 + 3 = 10 and then reason that 6 + 4 is also 10 (Blanton et al., 2015, p.51). In contrast, a 
student drawing on an equivalence or compensation approach, or who notices a relationship between 
both sides of the equal’s sign; may be drawing on a form of relational or structural thinking 
(Carpenter et al., 2003; Mason et al., 2009). 

Mason et al., (2009, p.12) states that “attention to structure runs through the whole of 
mathematics, and that shifts of attention make a difference to how mathematics is seen”. Developing 
structural awareness allows students to move from arithmetic (calculation) towards algebraic 
thinking (hence a “shift of attention”). Students who notice and understand mathematical structure 
are typically comfortable applying number properties to different situations, can form 
generalisations and are reported by teachers as being more engaged within the classroom (Carraher 
et al., 2008; Gronow et al., 2022: Mason et al., 2009). In contrast, students who do not attend to 
structure may view the equals sign as a command to carry out a calculation (Carpenter et al., 2023), 
and as a result are likely to find it significantly more difficult to reason with algebraic concepts in 
the future. Gronow et al., (2022) found that some teachers may even believe that “low ability” 
students do not have the capability to notice mathematical structure, however, it is well reported by 
researchers that students can do this from a young age (Blanton & Kaput, 2003; Carraher et al., 
2008). 

Instructional Materials 
Instructional materials lie within the curriculum enactment process between the official and 

operation curriculum (Remillard & Heck, 2014). They refer to resources designed to support 
teachers with lesson instruction, and ‘play a critical role in national education systems’ (p.707). 
Within New Zealand, the MOE (2021) affirms that successful resources help teachers to understand 
what research is saying about effective teaching and how to put it into practice. However, for 
teachers to use instructional materials effectively, they must devote significant time and attention to 
develop a deep understanding of the mathematical concepts involved. Teachers must also hold the 
concept of ‘explicitness’ in the forefront of their minds whilst using the instructional materials, as 
this will ensure mathematical ideas are made clear to students (Leong et al., 2019). This concept of 
‘explicitness’ is described by Selling (2016) as raising the collective awareness of the existence of 
mathematical concepts and practices and knowing why they are important in understanding 
mathematics. Mason et al., (2009) reports that it is not enough for teachers themselves to be aware 
of algebraic structure. They need to expect their students to justify and explain their actions using 
number properties that have been made explicit in the classroom. When a classroom has been 
‘algebrafied’ and number properties and relational structure are made explicit to students through 
task design, mathematical practices, and substantive classroom conversations, then student 
outcomes show improvement (Blanton & Kaput, 2003). Whilst instructional materials can have 
considerable promise in supporting algebraic understanding, when used as a prescriptive tool by the 
teacher a surface level understanding may result for both teacher and students. 

Methodology 
The data and participants of this study are drawn from a larger ongoing research project focused 

on schools involved in a professional learning and development research initiative entitled 
Developing Mathematical Inquiry Communities (DMIC). In this paper, we draw on data from a 
qualitative case study involving middle school students and their responses to an assessment item 
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administered in two different school years after a taught unit. Analysis of student responses was 
used to identify common themes with a specific focus on identifying what changes occur in students' 
algebraic noticing across a two-year period. 

Participants and Setting 
The participants were Year 7-8 students (aged 10-13) attending a low socio-economic middle 

school within New Zealand. All students present on the assessment day n=170 (2021) and n=157 
(2022) completed a free-response assessment task (see data collection section). As this paper focuses 
on change over time, responses from Year 8 students in 2021, and Year 7 students in 2022 were 
removed along with any students who had left the school or did not complete both assessments due 
to Covid interruptions. This resulted in a cohort of n=53 students who completed an algebraic 
assessment task during both years. The cohort included students from the Pacific Nations (35%), 
Māori (30%), and NZ European (24%). It is important to emphasize that in the first year of the study, 
teachers individually designed a series of algebraic tasks to form a unit on number and algebra for 
their students. In the second year, the teachers utilized a research-based instructional unit provided 
within the DMIC PLD that was compiled and developed by the third author (see Figure 1). This 
instructional unit consisted of 14 contextualized and problematic tasks that drew students’ attention 
to algebraic structures and relationships. Accompanying each task was information regarding big 
mathematical ideas (Randall, 2005), links to the New Zealand Curriculum, expected learning 
outcomes, and general notes that alerted teachers to important aspects regarding the teaching and 
learning of algebra as reported within research literature. Teachers were facilitated within the PLD 
to become familiar with this information and focus attention on the five teacher practices of 
anticipating, monitoring, selecting, sequencing, and connecting (Smith & Stein, 2018). 

 

Figure 1. Example task from the instructional unit. 

Data Collection 
Students were asked to complete a written free-response assessment task (see Figure 2) at the 

completion of the algebraic unit each year. This free-response task consisted of 12 individual 
equations that had equivalence to another equation through the distributive and associative number 
properties, or exponents. Under these equations were three prompts which encouraged students to 
describe and explain the number patterns, and to show if they work with other numbers 
(generalisation). The assessment task was launched by the teacher to ensure students knew what 
they were expected to do. Students then worked on the task individually within class time and were 
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encouraged to explain and represent their thinking. The completed assessment tasks were collected, 
scanned by the research team, and stored securely. 

 

Figure 2. Free-response assessment task (Hunter et al., 2022). 

Data Analysis 
Initially, student responses to the task were coded as either ‘not identifying’ or ‘identifying’ 

algebraic relationships. Responses coded as ‘not identifying’ were those in which students treated 
the task as a calculation exercise of individual equations. Responses coded as ‘identifying’ showed 
evidence of noticing or explaining one or more relationships between the six possible pairs of 
equations or items within the task. The samples coded as ‘identifying’ were then examined per item 
(equation pairs). Each item was assigned a code of 0-4 relating to the sophistication of the 
explanation given (see Table 1). Furthermore, items were coded as showing evidence of 
computational (C) or relational thinking (R) (Carpenter et al., 2003). For example, the student 
response “7 x 86 = (7 x 90) - (7 x 4). When you minus this (7 x 4) that will mean it will be 7 x 86. 
(90 - 4)” was coded as R3: explanation using relational thinking. The first and third author 
independently coded the samples. Any differences in coding were then discussed until a consensus 
was agreed on. 

Table 1 
Examples of how Students Explained 7 x 86 = (7 x 90) - (7 x 4) with Codes 

Code Example of Code 

(N) Not Identifying “7x86=602” 

(0) No explanation Drew an arrow between the two number sentences 

(1) Calculation Only (7 x 90) - (7 x 4) = 7 x 86 because 7 x 80 = 560, 7 x 6 = 42 

(2) Low Level Explanation “All I did to find the relationship between different equations is to find the 
answer using place value and see if the answers match up.” 

(3) Explanation “7 x 86 = (7 x 90) - (7 x 4). When you minus this (7 x 4) that will mean it will 
be 7 x 86. (90-4)” 

(4) Partial Generalisation “So you can do 90 x 7 - 28 to get 86 x 7. 
Examples: 7 x 4 = 28 so 7 x 3 = 7 x 4 - 7” 

Results and Discussion 
This section will focus on identifying and describing several changes that occurred in students' 

algebraic thinking. Results indicate that a significant shift of attention occurred within the way 
students view the mathematical equations between 2021 and 2022 with the introduction of the 
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designed instructional material. As shown on Table Two, this involved a significant shift in students 
viewing individual equations as a command to calculate towards identifying similarities between 
pairs of equations by using structural or relational reasoning. In the second year of data collection, 
90.6% of students were able to ‘identify’ relationships between pairs of equations, in contrast to 
22.6% of students during the first year (an increase of 68%). Findings from the 2021 sample are 
consistent with previous research, in which many students used calculations (Hunter et al., 2022; 
Schifter, 2017). However, the 2022 data indicates that the introduction of the material supported a 
shift with students away from solely calculation towards noticing and considering relational 
structure (Mason et al., 2009). 

Table 2 
Percentage of Students Noticing Algebraic Relationships  

 2021 2022 Change 

Not identifying 77.4% 9.4% -68% 

Identifying 22.6% 90.6% +86% 

Table 3 

Percentage of Students Identifying Algebraic Properties (all codes) 

Item 2021 2022 Change 

76 x 15 = * 5.7% 41.5% +35.8% 

37 + 43 + 40 + 36 = 37 + 40 + 36 + 43 15.1% 81.1% +66% 

99 ÷ 3 ÷ 3 = 99 ÷ 9 13.2% 60.4% +47.2% 

7 x 86 = (7 x 90) - (7 x 4) 3.8% 37.7% +33.9% 

63 = 6 x 6 x 6 22.6% 81.1% +58.5% 

12 x 22 = 4 x 66 7.5% 41.5% +34% 

*(70 x 10) + (70 x 5) + (6 x 10) + (6 x 5). 

Also notable was a significant shift in the number of students identifying each pair of related 
equations (Table 3), with an increase from 33.9% of students in 2021 to 66% in 2022. The largest 
of these gains occurred in the number of students noticing the associative property of addition 
(+66%) and exponents (+58.5%), with 81.1% of the students being able to identify both these 
properties in 2022. Equation pairings involving the distributive and associative properties of 
multiplication also improved from 33.9% to 35.8%, however, this was a much smaller shift. Possible 
reasons for this could include that these number properties are more difficult for students to notice 
and explain (Hunter et al., 2022), or teachers themselves have a superficial understanding of these 
concepts and therefore do not make these explicit within their classrooms (Grownow et al., 2022; 
Mason et al., 2009). 

Although results were generated for how students responded to each item, for the purpose of this 
paper, only 7 x 86 = (7 x 90) - (7 x 4) will be discussed in detail here (Table 4). This is because the 
item had the lowest percentage of change, so warrants closer inspection. In 2021, only two of the 53 
students identified this relationship. This included one student who drew an arrow between the 
equations, and one student who gave a low-level explanation saying they both equal 602. In contrast, 
in 2022 there were 20 students who identified this relationship. Most commonly, students provided 
low-level explanations using calculation (n=6) or identified relational structure with no-response 
(n=7). These students drew arrows to show the equations were related or explained equality by 
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relying on calculation means. This may indicate that whilst students’ attention is shifting towards 
noticing relationships, explaining these relationships may take more time to develop. Or as described 
earlier, teachers may not be making these explanations explicit within their classrooms. 

Table 4 
Number of Students Per Code Identifying the Distributive Property of Multiplication 

  No Response Calculations 
Only 

Low-Level Explanation Partial 
Generalisation 

2021 C 0 0 1 0 0 

R 1 0 0 0 0 

2022 C 2 2 6 0 1 

R 7 0 0 2 0 

*C=students gave indication of calculating, R=students only drew on relational structure. 

Examples of Specific Students 
Three specific students' responses will be shown here to illustrate different ways in which change 

occurred between the years. This includes the two students who identified the item in 2021 (Table 
5), and one who did not. 

Student A responded in 2021 by drawing a line between 7 x 86 and (7 x 90) - (7 x 4) and gave 
no further explanation (see Figure 3). We cannot be sure about the reasons why the student connected 
these two equations, as they gave written explanations for other items. So, there is a chance these 
may have been connected by the process of elimination. In 2022, they provided supplementary 
evidence of calculations proving both are equal to 602. 

 

Figure 3. Student A’s responses. 

Student B’s explanation in 2021 stated the equations were “the same as” and the “answer: 602”, 
indicating they solved the equation to prove equality (see Figure 4). Interestingly, in 2022 they 
repeated the previous response, however, they also gave an example of generalising this property to 
another example “(8 x 90) - (8 x 4) = 8 x 86”, becoming the only one of the n=53 students who gave 
a partial generalisation of the distributive property of multiplication. We can surmise that whilst this 
student is either still reliant or compelled to calculate to confirm equality, they do realise number 
properties can be generalised. 



Learning to notice algebraically 

523 

 

Figure 4. Student B’s responses. 

Student C is an example of one of the n=51 students who did ‘not identify’ this item in 2021 and 
attempted to answer each individual equation (Figure 5). In contrast, they were one of the two 
students in 2022 who were able to give a relational explanation in 2022. As seen in Figure 4, the 
student used their understanding of structure to show that both equations are equivalent to 7x86 
without drawing on any calculative means. 

 

Figure 5. Student C’s responses. 

In summary, the way in which each student noticed and reasoned with algebraic structure 
changed in different ways across the two-year period. This implies that the ways in which students 
develop an understanding of the distributive property is not constrained to a linear track of 
progression. They may in fact move back and forth between using calculation and relational means. 

Conclusion 
We aimed to identify how students noticing and explaining of algebraic structures changed after 

teachers were provided with designed instructional materials. In summary, the results from 2021 
showed students had little awareness of algebraic structure, and focused on solving individual 
equations (calculating), rather than noticing relationships between equations. In contrast, a shift of 
attention was seen in 2022, with many more students noticing algebraic structure, especially 
regarding the associative property and exponents. This indicates that the focus on calculating can be 
shifted by teachers who take the time to expose students to algebraic thinking within their 
classrooms. We surmise that providing research-based instructional materials could be a useful tool 
and show considerable promise in educating teachers about mathematical structure. This in turn will 
help to ‘algebrafy’ classrooms, support student outcomes and support student outcomes. 

Despite this large shift, many students still appeared to experience difficulty in identifying the 
distributive property. Additionally, it appeared that generalising number properties to other 
instances, an expectation of the New Zealand Curriculum for this age cohort, was challenging. 
Future research would be helpful to investigate whether teachers are making generalisations explicit 
within their classrooms and how they can be supported to do so. Moreover, beyond instructional 
materials, how can teachers be supported to develop sufficient mathematical content knowledge to 
teach generalisation and number properties in their classrooms. We aim to gather further data in 
2023, to contribute to the understanding of how different students' algebraic reasoning develops over 
time. 
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